Sunrise:

Panchromatic SED Models of Simulated Galaxies

Lecture 4: Dust emission & Sunrise science

Patrik Jonsson

Harvard-Smithsonian Center for Astrophysics

Lecture outline

- Lecture 1: Why Sunrise? What does it do? Example science. How to use the outputs? Projects?
- Lecture 2: Sunrise work flow. Parameters, convergence, other subtleties.
- Lecture 3: Radiation transfer theory. Monte Carlo. Polychromatic MC.
- Lecture 4: Dust emission, dust self-absorption. Sunrise on GPUs. Sunrise science.

Dust models

Models of dust try to match observations with a physical description of the grains Typically composed of Silicate grains (amorphous SiO₂) Carbonaceous grains (graphite)
 Polycyclic aromatic hydrocarbons (PAHs) with a distribution of sizes Cross sections calculated from material constants and geometry (spheres) See review by Draine (2003)

Dust emission

For large grains (many hundreds of Å) emission can be calculated as a modified blackbody

$$L_h = \int \sigma_a(\lambda) B(\lambda, T_e) \, \mathrm{d}\lambda = 2hc^2 \int \frac{\sigma_a(\lambda)}{(e^{hc/(k\lambda T_e)} - 1)\lambda^5} \, \mathrm{d}\lambda$$

But very small grains have such low heat capacity they are heated by single-photon absorptions

- Incluate in temperature
- Thermal equilibrium not a good approx.

Very small grain emission

grains are both hotter **and** colder than one might guess

Emission is broader than if thermal equilibrium is assumed BUT much harder to calculate

PAH emission

currently only modeled as a fixed fingerprint in Sunrise

A series of narrow features between 5-20 µm

Patrik Jonsson – HIPACC Summer School 2010

Thursday, August 12, 2010

Dust self-absorption

Would be straightforward if dust was only heated by starlight ø but it's not – dust absorbs its own emission

need to iterate:

* ronset week cells

calculate thermal

equilibrium T

Dust self-absorption: step 1 Calculate the equilibrium temperature of the dust grains

$$L_{h;c,s} = \int I_c(\lambda)\sigma_{a;s}(\lambda) d\lambda$$
 heating by absorption
of radiation
$$L_{h;c,s} = 2hc^2 \int \frac{\sigma_{a;s}(\lambda)}{(e^{hc/(k\lambda T_{e;c,s})} - 1)\lambda^2} d\lambda$$
 cooling by emission
of radiation
$$L_{h;c,s} = 2hc^2 \int \frac{\sigma_{a;s}(\lambda)}{(e^{hc/(k\lambda T_{e;c,s})} - 1)\lambda^2} d\lambda$$

Dust self-absorption: step 2

Calculate how much dust emission in the cells contributes to radiation intensity in the other cells

This is like a normal Monte Carlo pass, only sources aren't stars but the dust - and now go back and recalculate temperatures

More on dust self-absorption Actually, it's a bit more complicated... Let's look at this in more detail:

The temperature calculation we just talked about can be viewed as a conversion from intensity to luminosity $L_{\lambda} = B_{\lambda} (I_{\lambda'})$

And the transfer of radiation as a conversion from luminosity to intensity

$$I_{i,\lambda} = \sum_{j} L_{j,\lambda} T_{ij,\lambda}$$

T is known as the "lambda operator"

More on dust self-absorption

 $I_{i,\lambda} = \sum_{j} L_{j,\lambda} T_{ij,\lambda}$

Problem: we are recomputing the solution from the start each time Selements of T are subject to MC noise The resulting intensities will always change within the MC error Will never "converge", unless we use very many rays... O Difficult to judge when solution is stationary

Dust self-absorption: a better way

Instead: only transfer the **change** in L each MC pass, not the full luminosity

$$I_{i,\lambda}^{k+1} = I_{i,\lambda}^{k} + \sum_{j} \left(L_{j,\lambda}^{k} - L_{j,\lambda}^{k-1} \right) T_{ij,\lambda}$$

Signal being transferred is now **at most** as large as previous iteration

Eventually, all L must leave the box \Rightarrow scheme must converge

Dust self-absorption: a better way

Works quite well

Really interesting paper

The convergence criterion now: less than a specified fraction of the original luminosity left in the grid

This is expensive, though...

$$L_{h;c,s} = 2hc^2 \int \frac{\sigma_{a;s}(\lambda)}{\left(e^{hc/(k\lambda T_{e;c,s})} - 1\right)\lambda^2} \,\mathrm{d}\lambda$$

Need to do this for 10⁶ - 10⁷ grid cells and 100 wavelengths, for about 10 iterations, for **each** pass = Evaluating A LOT of exponentials

temperature calculation actually takes much longer than the ray tracing... (Yes, you can make a table... bear with me!)

Patrik Jonsson – HIPACC Summer School 2010

Thursday, August 12, 2010

... use a GPU to speed it up

- Graphics processors are now fully programmable, massively data-parallel machines
- Raw floating-point performance is many times larger than that of CPUs
- But small or non-existent cache sensitive to memory layout
- double-precision performance << single</p>
- Can be programmed in a C-like language (CUDA/OpenCL)

$$L_{h;c,s} = 2hc^2 \sum_{l} \frac{\sigma_{a;s,l} \Delta \lambda_l}{\left(e^{hc/(k\lambda_l T_{e;c,s})} - 1\right) \lambda_l^5}$$

Temperature calculation is perfect for a GPU
Massively parallel, floating-point intensive
Has been ported to run on Nvidia GPUs with CUDA (Jonsson & Primack 2010)
Each core will calculate the temperature for one specific cell and dust species

It's FAST!

GPU (Tesla C1060) is **69x** faster than 8 Xeon cores!

The GPU is even **16x** faster than the CPU doing **interpolation**!

Sunrise results

do these galaxies actually look real?

Simulated these in isolation for 1 Gyr, observed from many inclinations and bands Now let's compare them to the SINGS sample

Matching SEDs with SINGS galaxies

SINGS data from Dale et al 07

Comparing to SINGS: UV-NIR

color indicates nuclear type (orange: SB; green: LINER; blue: Sy; purple: n/a)

Comparing to SINGS: NIR-FIR

SLUGS from Willmer et al 09.

Origin of 850µm mismatch?

- Draine et al finds NO dust at <1U in any of the SINGS galaxies
- Sbc galaxy has 60%
- Setting an intensity floor of 5U decreases discrepancy
- But how do you get a galaxy with no dust at low radiation intensities?

Origin of 850µm mismatch?

- Dale & Helou (2002) find same mismatch with ISO/IRAS/SCUBA in their (much simpler) models
- Solve this by assuming a different cross section at long wavelengths
 - ${\it @}$ instead of $\kappa{\sim}\lambda^{-2}$
 - If they use $\kappa \sim \lambda^{2.5-0.4 \text{log U}}$
 - dust properties change with environment
- But what about the SLUGS galaxies?
 - they might be missing galaxies with less cold dust due to 850µm flux limit
 - The small sample size of SINGS might not have picked up this population with more cold dust

Comparing to SINGS: IRX-B

Patrik Jonsson – HIPACC Summer School 2010

Thursday, August 12, 2010

Star-Formation Rate indicators

Uncorrected

Corrected

Using SFR calibrations of Kennicutt (1998)

Spatially resolved colors: 8/24

Bendo et al. 2008

2 $[\nu(PAH \ 8\mu m)/I_{\nu}(24\mu m)]$ 1 0.50.20.10.5 $\mathbf{2}$ 200.050.2510501 $I_{\nu}(24\mu m)/MJy sr^{-1}$

Patrik Jonsson – HIPACC Summer School 2010

Thursday, August 12, 2010

Spatially resolved colors: 8/160

0.05

Bendo et al. 2008

 $(UTOO)^{1}/(UTVB)^{1} = 0.005 + 0.00$

Patrik Jonsson – HIPACC Summer School 2010

Thursday, August 12, 2010

Sunrise applications just a few examples

Merger identification calibration

Can measure sensitivity of merger detection methods on simulations

Lotz et al. (08, 10a, 10b)

Patrik Jonsson – HIPACC Summer School 2010

Thursday, August 12, 2010

Bulge/disk decompositions

 Compare kinematic bulge/disk decomposition (as done in simulations) to photometric (as done in observations)
 Governato et al (09)
 Scannapieco et al (10)
 Conclusions unclear at this point

Identifying high-redshift populations

Test if simulated merging galaxies would be selected as DOGs (Dust Obscured Galaxies) or SMGs (Submillimeter Galaxies)

Narayanan et al. (09, 10)

Summary

- Sunrise is a useful tool for making observational predictions from simulated galaxies
- Outputs match properties of observed galaxies well, but some discrepancies exist
- Real galaxies make up a more diverse set than the simulations
 - Simulated galaxy population or dust properties?
- I hope you now have a good grasp of what Sunrise is capable of and how to use it