Sunrise:

Panchromatic SED Models of Simulated Galaxies

Lecture 4:
Dust emission \& Sunrise science

Patrik Jonsson

Harvard-Smithsonian Center for Astrophysics
Patrik Jonsson - HIPACC Summer School 2010

Lecture outline

- Lecture 1: Why Sunrise? What does it do? Example science. How to use the outputs? Projects?
- Lecture 2: Sunrise work flow. Parameters, convergence, other subtleties.
- Lecture 3: Radiation transfer theory. Monte Carlo. Polychromatic MC.
- Lecture 4: Dust emission, dust selfabsorption. Sunrise on GPUs. Sunrise science.

Dust models

- Models of dust try to match observations with a physical description of the grains
- Typically composed of
- Silicate grains (amorphous SiO_{2})
- Carbonaceous grains (graphite)
- Polycyclic aromatic hydrocarbons (PAHs)
- with a distribution of sizes
- Cross sections calculated from material constants and geometry (spheres)
- See review by Draine (2003)

Dust emission

- For large grains (many hundreds of \AA) emission can be calculated as a modified blackbody

$$
L_{h}=\int \sigma_{a}(\lambda) B\left(\lambda, T_{e}\right) \mathrm{d} \lambda=2 h c^{2} \int \frac{\sigma_{a}(\lambda)}{\left(e^{h c /\left(k \lambda T_{e}\right)}-1\right) \lambda^{5}} \mathrm{~d} \lambda
$$

- But very small grains have such low heat capacity they are heated by single-photon absorptions
- fluctuate in temperature
- thermal equilibrium not a good approx.

Very small grain emission

Emission is broader than if thermal equilibrium is assumed

BUT much harder to calculate

Patrik Jonsson - HIPACC Summer School 2010

PAH emission

currently only modeled as a fixed fingerprint in Sunrise

A series of narrow features between $5-20 \mu \mathrm{~m}$

Patrik Jonsson - HIPACC Summer School 2010

Dust self-absorption

- Would be straightforward if dust was only heated by starlight
- but it's not - dust absorbs its own emission
- need to iterate:

Patrik Jonsson - HIPACC Summer School 2010

Dust self-absorption: step 1

Calculate the equilibrium temperature of the dust grains

$$
L_{h ; c, s}=\int I_{c}(\lambda) \sigma_{a ; s}(\lambda) \mathrm{d} \lambda
$$

heating by absorption of radiation

balances

$$
L_{h ; c, s}=2 h c^{2} \int \frac{\sigma_{a ; s}(\lambda)}{\left(e^{h c /\left(k \lambda T_{e}, c, s\right)}-1\right) \lambda^{2}} \mathrm{~d} \lambda
$$

Patrik Jonsson - HIPACC Summer School 2010

Dust self-absorption: step 2

Calculate how much dust emission in the cells contributes to radiation intensity in the other cells

This is like a normal Monte Carlo pass, only sources aren't stars but the dust

- and now go back and recalculate temperatures

More on dust self-absorption

Actually, it's a bit more complicated...
Let's look at this in more detail:

- The temperature calculation we just talked about can be viewed as a conversion from intensity to luminosity

$$
L_{\lambda}=B_{\lambda}\left(I_{\lambda^{\prime}}\right)
$$

- And the transfer of radiation as a conversion from luminosity to intensity

T is known as the "lambda operator"

More on dust self-absorption

$I_{i, \lambda}=\sum_{j} L_{j, \lambda} T_{i, \lambda}$

- Problem: we are recomputing the solution from the start each time
- Elements of T are subject to MC noise
- The resulting intensities will always change within the MC error
- Will never "converge", unless we use very many rays...
- Difficult to judge when solution is stationary

Dust self-absorption: a better way

Instead: only transfer the change in L each MC pass, not the full luminosity

$$
I_{i, \lambda}^{k+1}=I_{i, \lambda}^{k}+\sum_{j}\left(L_{j, \lambda}^{k}-L_{j, \lambda}^{k-1}\right) T_{i j, \lambda}
$$

Signal being transferred is now at most as large as previous iteration

Eventually, all L must leave the box \Rightarrow scheme must converge

Dust self-absorption: a better way

Works quite well

The convergence criterion now: less than a specified fraction of the original luminosity left in the grid

This is expensive, though...

$$
L_{h ; c, s}=2 h c^{2} \int \frac{\sigma_{a ; s}(\lambda)}{\left(e^{h c /\left(k \lambda T_{e} ;, c, s\right)}-1\right) \lambda^{2}} \mathrm{~d} \lambda
$$

Need to do this for $10^{6}-10^{7}$ grid cells and 100 wavelengths, for about 10 iterations, for each pass

= Evaluating A LOT of exponentials

temperature calculation actually takes much longer than the ray tracing...
(Yes, you can make a table... bear with me!)

...use a GPU to speed it up

- Graphics processors are now fully programmable, massively data-parallel machines
- Raw floating-point performance is many times larger than that of CPUs
- But small or non-existent cache - sensitive to memory layout
- double-precision performance << single
- Can be programmed in a C-like language (CUDA/OpenCL)

$$
L_{h ; c, s}=2 h c^{2} \sum_{l} \frac{\sigma_{a ; s, l} \Delta \lambda_{l}}{\left(e^{h c /\left(k \lambda_{l} T_{e ; c, s}\right)}-1\right) \lambda_{l}^{5}}
$$

- Temperature calculation is perfect for a GPU
- Massively parallel, floating-point intensive
- Has been ported to run on Nvidia GPUs with CUDA (Jonsson \& Primack 2010)
- Each core will calculate the temperature for one specific cell and dust species

It's FAST!

GPU (Tesla C1060) is 69x faster than 8 Xeon cores!

The GPU is even $16 x$ faster than the CPU doing interpolation!

Sunrise results

do these galaxies actually look real?

Patrik Jonsson - HIPACC Summer School 2010

Remember these guys?

$\mathrm{Sbc}+\mathrm{Sbc}$ G3 Sbc-
 G2
 G1

Simulated these in isolation for 1 Gyr, observed from many inclinations and bands

Now let's compare them to the SINGS sample
Patrik Jonsson - HIPACC Summer School 2010

Matching SEDs with SINGS galaxies

SINGS data from Dale et al 07
Patrik Jonsson - HIPACC Summer School 2010

Comparing to SINGS: UV-NIR

color indicates nuclear type (orange: SB; green: LINER; blue: Sy; purple: n / a)

Patrik Jonsson - HIPACC Summer School 2010

Comparing to SINGS: NIR-FIR

Patrik Jonsson - HIPACC Summer School 2010

Origin of $850 \mu \mathrm{~m}$ mismatch?

- Draine et al finds NO dust at <1U in any of the SINGS galaxies
- Sbc galaxy has 60\%
- Setting an intensity floor of 5 U decreases discrepancy

- But how do you get a galaxy with no dust at low radiation intensities?

Origin of $850 \mu \mathrm{~m}$ mismatch?

- Dale \& Helou (2002) find same mismatch with ISO/IRAS/SCUBA in their (much simpler) models
- Solve this by assuming a different cross section at long wavelengths
- instead of $k \sim \lambda^{-2}$
- they use $k \sim \lambda^{2.5-0.410 g} U$
- dust properties change with environment
- But what about the SLUGS galaxies?
- they might be missing galaxies with less cold dust due to $850 \mu \mathrm{~m}$ flux limit
- The small sample size of SINGS might not have picked up this population with more cold dust

Comparing to SINGS: IRX- β

Patrik Jonsson - HIPACC Summer School 2010

Star-Formation Rate indicators

Uncorrected

Using SFR calibrations of Kennicutt (1998)
Patrik Jonsson - HIPACC Summer School 2010

Spatially resolved colors: 8/24

Patrik Jonsson - HIPACC Summer School 2010

Spatially resolved colors: 8/160

Patrik Jonsson - HIPACC Summer School 2010

Sunrise applications just a few examples

Patrik Jonsson - HIPACC Summer School 2010

Merger identification calibration

Can measure sensitivity of merger detection methods on simulations

Lotz et al. (08, 10a, 10b)

Patrik Jonsson - HIPACC Summer School 2010

Bulge/disk decompositions

- Compare kinematic bulge/disk decomposition (as done in simulations) to photometric (as done in observations)
- Governato et al (09)
- Scannapieco et al (10)
- Conclusions unclear at this point

Patrik Jonsson - HIPACC Summer School 2010

Identifying high-redshift populations

- Test if simulated merging galaxies would be selected as DOGs (Dust Obscured Galaxies) or SMGs (Submillimeter Galaxies)

Narayanan et al. $(09,10)$

Summary

- Sunrise is a useful tool for making observational predictions from simulated galaxies
- Outputs match properties of observed galaxies well, but some discrepancies exist
- Real galaxies make up a more diverse set than the simulations
- Simulated galaxy population or dust properties?
- I hope you now have a good grasp of what Sunrise is capable of and how to use it

